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A new scoring function for protein–protein
docking that identifies native structures with
unprecedented accuracy†

Irina S. Moreira,‡ João M. Martins,‡§ João T. S. Coimbra,‡ Maria J. Ramos and
Pedro A. Fernandes*

Protein–protein (P–P) 3D structures are fundamental to structural biology and drug discovery. However,

most of them have never been determined. Many docking algorithms were developed for that purpose,

but they have a very limited accuracy in generating native-like structures and identifying the most

correct one, in particular when a single answer is asked for. With such a low success rate it is difficult to

point out one docked structure as being native-like. Here we present a new, high accuracy, scoring

method to identify the 3D structure of P–P complexes among a set of trial poses. It incorporates alanine

scanning mutagenesis experimental data that need to be obtained a priori. The scoring scheme works

by matching the computational and the experimental alanine scanning mutagenesis results. The size of

the trial P–P interface area is also taken into account. We show that the method ranks the trial structures

and identifies the native-like structures with unprecedented accuracy (B94%), providing the correct P–P

3D structures that biochemists and molecular biologists need to pursue their studies. With such a success

rate, the bottleneck of protein–protein docking moves from the scoring to searching algorithms.

Introduction

The 3D structure of protein–protein (P–P) complexes is of the
utmost importance for molecular biology and drug discovery,
as these interactions form the basis of many phenomena. Most
of the structures of the P–P complexes have never been solved,
due to inherent difficulties of P–P structural determination by
X-ray crystallography or NMR. There is an urgent request of
computational procedures capable of reliably generating and
identifying 3D P–P structures.1 Protein docking is a method to
assemble two separate proteins into their biologically relevant
complex. It is the method of choice for this task nowadays.2 It
consists of two essential steps: search and scoring. The search
step generates trial P–P geometries (poses). Usually, it begins
by treating the proteins as rigid bodies and searches the

translational and rotational 6D space to identify a set of
promising poses using simple scoring functions, with shape
complementarity playing a major role.3 Full atomic detail is
added subsequently, flexibilizing side-chains and, eventually,
the backbone, with the help of energy-based scoring functions.
If biological information on the location of the P–P interface is
available, it should also be used as early as possible to direct the
search.4 The final purpose of the search stage is to find a set of
poses as close as possible to the native pose and, ideally, with
the true native pose included among them.

The next stage is scoring, which aims at ranking the poses
according to their thermodynamic stability and identifying the
most stable one, the true native structure (note that there are
cases where the native structure is not the most stable, but
instead a kinetically-trapped metastable structure, but these are
not common). Scoring functions generally involve solvation
potentials, empirical atom–atom or residue–residue contact
energies or frequencies, and continuum electrostatics, among
other techniques.5 The problem is that the existent scoring
functions neither provide an accurate identification of a native-
like solution, nor do they rank correctly the trial poses. The
community-wide experiment on the Critical Assessment of
Predicted Interactions (CAPRI, http://www.ebi.ac.uk/msd-srv/capri)
has been benchmarking the performance of protein–protein
docking algorithms since 2001. The reports made over the years6–8

show that the field is still in an early stage of development.
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If a molecular biologist solves the 3D structures of two proteins
and wants to predict the correct 3D structure of the complex
between them, using current docking algorithms, the probability
of getting the right answer is exceedingly low. This means that
current docking algorithms are still incapable of providing the
answers that they were developed for, even though progresses
are being made by very able people in the field.6–8

The scoring step is the subject of this work. We will show a
way to identify the native pose among a group of trial poses
with high accuracy and reliability. For that purpose we have
incorporated our computational alanine scanning mutagenesis
method (cASM)9,10 into two scoring functions, which we called
SFASM (scoring function of ASM) and SFASM:iA (scoring function
of ASM and interface Area, iA). Alanine scanning mutagenesis
(ASM) is the trendiest method for mapping P–P interfaces as
it measures the free energy contributions of individual side-
chains to protein binding.11 It identifies hot-spots (HS), which
are the residues responsible for complex formation. We will
show that a scoring function that compares the cASM results
with experimental ASM results (expASM), together with the
value for the buried surface area upon complex formation
(iA), can identify the native pose among a large set of decoys,
with reliability and an accuracy much superior to any existing
scoring function. This does not mean that our experiment-
driven scoring functions are ‘‘better’’ than the many excellent
ones available. Such comparison does not make sense, because
the available scoring functions do not use or need expASM data.
Our scoring functions use additional biochemical data that
exist or alternatively must be obtained experimentally a priori.

Despite the extra effort, in the latter case, the impact of the
result (i.e., a reliable native P–P structure) completely pays off
for the effort.

Methods
Data-set

Our dataset (Table 1) was composed of 18 complex structures.
Both X-ray structures and experimental values for the binding
free energy changes upon alanine mutation exist for all of
them. The set includes four unbound–unbound cases (i.e., the
X-ray structure of the complex and of both isolated monomers is
available), seven unbound–bound (i.e., the X-ray structure of the
complex and of just one of the isolated monomers is available)
and seven bound–bound structures (i.e., only the X-ray structure
of the complex is available or is used). The set was chosen to be
diverse in nature and in size, in hydrophobicity, and in the
number of hot-spots present. Benchmarks of docking algorithms
usually use a larger number of protein complexes. Here, the size
of the set was limited by the availability of accurate experimental
results for alanine scanning mutagenesis. Despite being not very
large, its size is more than enough to illustrate the performance of
the method.

Generation of trial poses – the search step

We used HADDOCK (High Ambiguous Driven DOCKing) for the
‘‘search’’ as it is one of the most widely used software, has a
high number of citations per year and performs consistently

Table 1 Data-set of the 18 protein–protein complexes under study. U:U stands for unbound–unbound, U:B stands for unbound–bound, B:B stands for
bound–bound. The number of hot spots (HS) is given according to three typical definitions: residues that, upon being mutated by alanine, increase the
binding free energy (i) by 44 kcal mol�1, (ii) by 4 than 2 kcal mol�1 and (iii) by 41.5 kcal mol�1. The total number of mutated residues (no. mut.), the X-ray
resolution and the protein families following the SCOP12 classification are also given

Complex
(PDBID) Resolution/Å

Monomer A
(PDBID)

Monomer B
(PDBID)

Monomer A/monomer B
protein family Type

No.
HS (i)

No.
HS (ii)

No.
HS (iii)

No.
mut. Ref.

1BRS13 2.00 Barnase (1A2P)14 Barstar (1A19)15 Bacterial ribonucleases/
barstar-related

U:U B:B 6 9 10 14 16 and 17

1VFB18 1.80 Igg1 Kappa
D1.3 FV (1VFA)18

Hen egg white
lysozyme (2VB1)19

V set domains/C-type
lysozyme

U:U B:B 1 4 5 27 20 and 21

1DFJ22 2.50 RNaseA (3EUX)23 RNaseA inhibitor
(2BNH)24

Ribonuclease A-like/
28-residue LRR

U:U B:B 1 4 5 14 25 and 26

1FLT27 1.70 VEGF (2VPF)28 FLT-1 (1QSV)29 Platelet-derived growth
factor-like/I set domains

U:U 0 4 5 20 30

1DVF31 1.90 Igg1 Kappa
D1.3 FV (1VFA)18

Igg1 Kappa
E5.2 FV (1DVF)31

V set domains/V set
domains

U:B 5 8 16 22 20 and 32

2EKS33 2.00 HyHEL-10 (2EKS)33 HEL (2VB1)19 —/C-type lysozyme U:B 3 5 6 16 34 and 35
1FCC36 3.20 Igg1 FC (1H3T)37 Streptococcal

protein
G (1FCC)36

C1 set domains/
immunoglobulin-binding
domains

U:B B:B 1 4 4 8 38

1FQ939 3.00 Fibroblast growth
factor 240

Fibroblast growth
factor receptor 139

FGF/I set domains U:B B:B 1 4 4 18 41 and 42

1A2243 2.60 hGH (2AEW)44 hGHbp (1A22)43 Fibronectin type III/
long-chain cytokines

U:B 0 3 5 23 45–47

1F4748 1.95 Bacterial cell
division ZipA
(1F46)48

Ftsz (1F47)48 Cell division protein
ZipA, C-terminal
domain/—

U:B B:B 0 3 4 9 48

1IAR49 2.30 IL-4 (1RCB)50 IL4bp (1IAR)49 Short-chain cytokines/
fibronectin type III

U:B 0 2 3 18 51

1EMV52 1.70 Im9 (1EMV)52 Colicin E9
(1EMV)52

Colicin E immunity
proteins/HNH-motif

B:B 2 6 7 25 53
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well in reputable tests.2 HADDOCK starts with a randomization of
orientations and rigid body energy minimization (1000 solutions),
followed by semi-rigid simulated annealing in torsion angle space
(200 solutions), and final refinement in Cartesian space with an
explicit solvent (200 solutions). It uses biological information to
drive the docking by introducing AIRs (Ambiguous Interaction
Restrains).54 We have used the known HS residues (2.0 kcal mol�1

cutoff) as the ‘‘active residues’’ in HADDOCK in order to drive the
search stage to generate native-like structures as many as possible.
The final 200 solutions were evaluated according to their i-RMSDs
(Root-Mean-Square-Deviations of the Interface in comparison
with the X-ray structure) and fnat (fraction of native contacts).
We have used the following classification for the 200 structures,
inspired in the CAPRI criteria:6–8 high (i-RMSD lower than 1 Å
and fnat higher than 0.50), medium (i-RMSD between 1 and 2 Å
and fnat between 0.30 and 0.50), acceptable (i-RMSD between
2 and 4 Å and fnat between 0.1 and 0.3) and incorrect (i-RMSD
higher than 4 Å or fnat lower than 0.1). We have used an in house
script to reduce the 200 solutions to a smaller subset of 20
structures, which is more manageable for computational alanine
scanning calculations. The script automatically selected 5 structures
for each of the 4 categories mentioned before. In the cases that
the criterion was not fulfilled, we automatically selected a higher
number of solutions for the remaining categories.

Generating the two new scoring functions for protein–protein
docking

The MM-PBSA (Molecular Mechanics Poisson Boltzmann Surface
Area) script55 integrated into the AMBER 10.0 package56 was used
to calculate the binding free energy difference upon alanine
mutation. It combines a continuum approach to model solvent
interactions with a MM-based approach to atomistically model
protein–protein interactions. This provides speed and accuracy
and has been quite used in the last few years.9–10,55,57–66 The
MM-PBSA approach first developed by Massova et al.55 was
improved by Moreira et al.10 through the introduction of residue-
specific dielectric constants to be used in ASM, and can now be
applied for this task with an accuracy of 1 kcal mol�1. It was shown
that the use of residue-specific dielectric constants in ASM calcula-
tions makes MM-PBSA to be as accurate as more time consuming
methods such as thermodynamic integration.67 The mutant
complexes were generated by a single truncation of the mutated
side chain, replacing Cg with a hydrogen atom and setting the
Cb–H direction to that of the former Cb–Cg. The difference in
binding free energy upon alanine mutation (DDG) is defined as the
difference between the mutant and wild type complexes:

DDG = DGcpx�mutant � DGcpx�wild type (1)

Typical contributions to the free energy include the internal
energy (bond, dihedral, and angle), the electrostatic and the
van der Waals interactions, the free energy of polar solvation,
the free energy of nonpolar solvation, and the entropic
contribution:

Gmolecule = Einternal + Eeletrostatic + EvdW + Gpolar solvation

+ Gnon-polar solvation � TS (2)

Although molecular dynamics proved to give the best results,
as it is computationally expensive to be applied to every docking
trial pose, it was not used. Instead, we used a 1000 step mini-
mization in a water box of 10 Å, which has already demonstrated
to give reasonable results.10 For the calculations of relative free
energies between closely related complexes, it is assumed that the
total entropic term in eqn (2) is negligible as the partial contribu-
tions essentially cancel each other.64 The first three terms of
eqn (2) were calculated with no cutoff. Gpolar solvation was calculated
by solving the Poisson–Boltzmann equation using the software
DELPHI.68,69 In this continuum method, the protein is modelled
as a dielectric continuum of low polarizability embedded in a
dielectric medium of high polarizability. We used a set of values
for the DELPHI parameters that proven in a previous study to
constitute a good compromise between accuracy and computing
speed.70 We used a value of 2.5 grids per Å for scale (the reciprocal
of the grid spacing); a value of 0.001 kT c�1 for the convergence
criterion; a 90% for the fill of the grid box; and the Coulombic
method to set the potentials at the boundaries of the finite-
difference grid. The dielectric boundary was taken as the mole-
cular surface defined by a 1.4 Å probe sphere and by spheres
centered on each atom with radii taken from the Parse71 vdW
radii parameter set. The key aspect of the new improved approach
is the use of a three dielectric constant set of values (e = 2 for
nonpolar residues, e = 3 for polar residues and e = 4 for charged
residues plus histidine) to mimic the expected rearrangement
upon alanine mutation (the method has been previously
described).9,10 It is important to highlight that we used only one
trajectory for the computational energy analysis as it has been
proven to give the best results.10 Side-chain reorientation was
implicitly included in the formalism by increasing the internal
dielectric constant. The nonpolar contribution to the solvation
free energy due to van der Waals interactions between the solute
and the solvent was modelled as a term dependent of the solvent
accessible surface area (SASA) of the molecule. It was estimated by
0.00542 � SASA + 0.92 using the molsurf program developed by
Mike Connolly.72 As a systematic mutation of residues of typical
protein–protein interfaces is a fastidious and time consuming
methodological approach we have recently developed a VMD73

plugin (http://compbiochem.org/Software/compasm/Home.html).74

This plugin has an easy-to-use graphical interface to prepare the
input files, run the calculations and analyze the final results.

The performance of the ASM method can be assessed by the
use of the F1 score (eqn (3)), which is defined as a function of
Precision (P, also called specificity, eqn (4)) and Recall (R, also
called sensitivity, eqn (5)). The F1 score, P and R can be
defined as

F1 ¼ 2PR

PþR
(3)

P ¼ TP

TPþ FP
(4)

R ¼ TP

TPþ FN
; (5)
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in which TP stands for true positive (predicted HS that are an
actual HS), FP stands for false positive (predicted HS that are
not an actual HS), and FN stands for false negative (non-
predicted HS that are an actual HS). Accuracy is defined as
the ratio of the number of correctly predicted residues to the
number of all predicted residues as in eqn (6):

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
; (6)

in which TN are the true negatives (correctly predicted NS).
Specificity is another measure of performance and is formulated as

Specificity ¼ TN

TNþ FP
(7)

Average and maximum |DDGMM-PBSA � DDGexperimental| values
were also calculated for the interfacial residues in all interfaces.

We also fitted, using a linear regression, each group data
against each corresponding DDGbinding value in order to ascer-
tain the ability of the various descriptors to score the different
docking solutions.

Results and discussion

cASM was used to score docking poses provided by the
HADDOCK54,75,76 docking software for 18 P–P complexes
(described in the Methods section), for which reliable X-ray
structures and significant expASM data were available (216
distinct Ala mutations in total). This dataset is large enough
to show, beyond doubt, the advantages of the method proposed
here. Larger datasets could eventually be used, but they would
not bring significant differences to the results and conclusions,
and the testing of much larger sets would be very much
CPU-demanding and time consuming. Moreover, the number
of protein–protein complexes to be used is greatly limited by
the availability of accurate experimental data for alanine scanning
mutagenesis. The very popular HADDOCK docking software
was used for the search because it consistently gives good results
for wide comparative experiments.77 Search poses with other
software (pyDock,78 PatchDock,79,80 FireDock,81,82 Cluspro 2.0,83–85

Gramm-X,86,87 Hex,88–95 ZDOCK,96–98 and SwarmDock99–101) were
preliminarily tried, giving basically similar results (data not
shown). Our diverse dataset is composed of 11 unbound–
unbound/unbound–bound and 7 bound–bound systems. The first
corresponds to the cases where at least one (unbound–bound) or
the two (unbound–unbound) protein monomers were crystallized
independently, in the free uncomplexed conformations. The
second (bound–bound) includes the monomers crystallized
within the complex, already in a bound conformation. The first
set reflects the ‘‘real problem’’ that structural biology is facing.
The second represents a good test set because it allows the
evaluation of the scoring performance (which is the purpose of
this work) with less complications arising from the limitations in
the current searching algorithms (i.e. the limits in the capacity of
generating good trial poses).

The strictest definition of HS is that of a residue that
increases the binding free energy by 44.0 kcal mol�1 upon

alanine mutation. Smaller free energy thresholds such as
2.0 kcal mol�1 and 1.5 kcal mol�1 are also used commonly.59,61,62,66

The 18 diverse P–P complexes have a number of hot-spots
(44 kcal mol�1) per complex ranging from zero to six (see
Table 1).

It is obvious that, among the trial P–P poses, the closest to
the native one will have the better agreement between the
expASM and the cASM results. The rationale for this is as
follows: (i) interactions among residues across the P–P interface
depend on the pose; (ii) incorrect poses lead to mismatch in the
P–P contacts, changing inter-residue interactions; (iii) ASM
measures these individual interactions; (iv) consequently, the
ASM values will strongly depend on the poses; (v) the correct
pose will have the correct contacts, thus the correct ASM
results; (vi) incorrect trial poses will have incorrect contacts,
thus cASM values computed for those incorrect poses will be
different from the true expASM results measured in the true
pose, with the true contacts.

In summary, the closest the pose from the native one, the
closest the cASM and expASM results will be.

Another factor that we expect to be important to identify the
native pose is the interface area (iA). Most of the protein–
protein binding energy comes from dispersive interactions,
and these are proportional to the contact surface. Polar residues
interacting across the interface contribute less, due to desolvation
penalties.13 Even though the value of the interface area does not
distinguish electrostatic mismatches, it may help in the fine
distinction between similar poses, for which electrostatic inter-
actions have been taken into account previously.

A set of nine structural quality indicators, commonly used to
compare expASM with cASM methods, have been tested to
build a simple scoring function; all trials are summarized in
ESI,† SI2 and SI3. Bound–bound docking is particularly useful
for these tests because it allows the testing of the scoring
without introducing complications arising from imperfect
searching of the conformational space. The correlation between
the indicators shown in ESI,† SI2 and pose accuracy is low, even
though there is an increase of the correlation for the complexes
with a higher number of hot-spots, such as 1BRS.102 A careful
analysis of ESI,† SI2 shows that most indicators do not have
enough discriminative power. Those that are more predictive
are the number of hot spots correctly detected (TP), which
makes sense, as they are the ones that confer the directionality
for the complex formation event. We have defined HS in three
typical ways, i.e. residues that increase the binding free energy
upon alanine mutation by (i) more than 4.0 kcal mol�1,
(ii) more than 2.0 kcal mol�1 and (iii) more than 1.5 kcal mol�1.
From (i) to (iii) we move from a more stringent to a broader HS
definition. The analysis of ESI,† SI2 suggested us that (1) ranking
the poses by the number of true positives detected by cASM
according to definition (i); (2) applying definition (ii) subse-
quently to rank poses where condition (i) gave equivalent results;
and (3) applying definition (iii) for further differentiation of
equivalent results, when the application of definitions (i) and
(ii) still gave equivalent results, lead to the most correct pose
ranking that can be generated with the used indicators.
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In principle, multiple regression analysis could retrieve a mathe-
matical equation, involving further indicators, or a different
weighting scheme, with superior predictive power for these 18
complexes. However, we wanted a scoring function/method as
simple as possible, rooted in a logical physical ground, to be both
physically informative and with broad applicability beyond the
test set. Consistently, we did not try to ‘‘train a function’’ to get
the ‘‘best fit’’ in a subset of complexes, but instead derive the
‘‘best scoring rationale’’ based on the physics of the P–P systems.
By using this hierarchic energetic scheme, we are weighting more
the contacts most important for binding (with larger free energy
contributions) from a more restrictive to a more broad definition,
with a subsequent increase in the number of residues that fulfill
the specific conditions. The resulting scoring function is the
same whenever one uses the whole 18 complexes to derive it, or
uses a subset of 12 complexes (a training set) to derive it and
6 complexes (a test set) to test it, because it is not fitted, but
instead it is build up using physical grounds.

As this scoring method is based on a binary logical classi-
fication scheme, it can lead to draws between ranked struc-
tures. To further distinguish between similar top-ranked poses
we have used the area of the interface as a discriminating
criterion. The rationale is that, among poses with good electro-
static matches, and overall correct poses, the one with the
largest buried area will be the one that binds better, as hydro-
phobic forces are the driving forces for the binding, and they
are roughly proportional to the buried area. The importance
of the diminution of solvent accessibility of HS was already

demonstrated for a variety of complexes.66,102 When we applied
the interface area (iA) to discriminate between equivalent poses
we realized that it was so successful in identifying native
conformations that we introduced another variant of the scoring
function, using a consensus between SFASM and iA (i.e., averaging
the ranking positions given by both, after applying each one
independently), which we have called SFASM:iA.

Despite being known that scoring functions cannot be used
as binding affinity predictors, it is informative to determine the
correlation between a given scoring function and the binding
free energy. However, here it is not possible to do so. SFASM and
SFASM:iA provide a ranking position, and not a continuous
variable as a value. This means that the best-scored complex
will always have a score of ‘‘first’’, regardless of the binding free
energy of the protein–protein complex.

cASM was applied to the 20 trial poses (plus the experi-
mental X-ray structures of the complexes) generated by HAD-
DOCK for each of the 18 P–P complexes. The results for each
complex are given in Tables 2 and 3. The number of structures
(among the 20 trial poses of each complex) that are incorrect,
and that have high accuracy (i-RMSD o 1 Å), as well as the
respective averages is given for the reader to understand
the merits and limitations of the searching algorithms and
the quality of the set of structures that are ranked by our
scoring functions.

Table 4 summarizes the performance of the method, showing
the root mean square deviations between the interfacial residues
(i-RMSD) for the top ranked poses (among the 21 possible)

Table 2 cASM results for each complex and considering the U:U/U:B situations. The root mean square deviation for the interfacial residues (i-RMSD)
was measured relative to the X-ray solution. Incorrect poses were defined as poses with i-RMSD 44 Å

Complex
i-RMSD of the
1st ranked structure/Å

i-RMSD of 1st ranked structure
(without X-Ray)/Å

Position of the
1st incorrect pose

No. structures with
i-RMSD 44

No. structures with
i-RMSD o1

Average
i-RMSD

U:U/U:B structures, SFASM scoring function
1BRS 0.0 1.8 12 5 1 4.3
1DVF 1.1 1.1 13 4 5 4.1
2EKS 0.0 7.4 2 19 1 8.4
1VFB 0.0 3.6 7 8 1 4.2
1DFJ 0.0 4.1 2 11 1 4.7
1FCC 0.0 0.9 5 5 6 3.5
1FQ9 0.9 0.9 14 4 5 3.2
1FLT 1.9 1.9 2 5 1 4.7
1A22 3.9 3.9 3 16 1 10.9
1F47 0.0 2.4 3 17 1 9.8
1IAR 0.0 4.0 4 9 1 4.3

Average 0.7 2.9 6 9.4 2.2 5.6

U:U/U:B structures, SFASM:iA scoring function
1BRS 0.0 1.8 12 5 1 4.3
1DVF 0.0 1.1 13 4 5 4.1
2EKS 0.0 7.6 2 19 1 8.4
1VFB 0.0 3.4 7 8 1 4.2
1DFJ 0.0 3.9 2 11 1 4.7
1FCC 0.0 0.9 5 5 6 3.5
1FQ9 0.9 0.9 14 4 5 3.2
1FLT 0.0 2.8 2 5 1 4.7
1A22 0.0 16.8 3 16 1 10.9
1F47 0.0 2.4 3 17 1 9.8
1IAR 0.0 4.0 4 9 1 4.3

Average 0.1 4.2 6 9.4 2.2 5.6
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against the X-ray structures, averaged over the 18 complexes.
Detailed results for every complex separately are given in ESI,† SI3.

Other quality criteria, such as the fraction of native contacts
(shown in ESI,† SI2) or the RMSD of the whole complex, could be
used. We used only the i-RMSD for simplicity, but given the large
number of cases where the X-ray structures were ranked first, and
in particular the very large number of high-resolution structures
ranked first, we realized that using all these quality measurements
would give equivalent results as using only the i-RMSD.

In a large number of cases (12 out of 18 by SFASM and 17 out
of 18 by SFASM:iA) the top ranked pose was within 1 Å of the X-ray
structure. SFASM:iA was the most successful scoring function,
with a success of B94% in identifying the 3D correct structure of
the P–P complex.

In the unbound–unbound/unbound–bound set, SFASM:iA

ranked the X-ray 1st, in 10 out of 11 cases; in the remaining
case, it ranked first a structure of high accuracy (i-RMSD o 1 Å),
with an i-RMSD of 0.9 Å. In the bound–bound set (7 complexes),
it ranked the X-ray structure 1st in one case, ranked high-
accuracy structures 1st in 5 cases, and in a single case it ranked
first a structure with an i-RMSD of 2.1 Å. In summary, in 17 out
of 18 cases the structure delivered by SFASM:iA was highly
accurate and the answer was systematically reliable.

The results show that, as far as the search algorithms
retrieving good poses, our method is very robust. However,
current search algorithms are not perfect enough, and in some
cases many of the poses they generate are not accurate. It is
obvious that we cannot identify a true pose with our scoring
function if the true pose is not present in the pose set at all.

The quality of the search algorithm was very much case-
dependent. An overview can be seen in Table 5, where the
number of high-resolution structures and the number of
incorrect structures (i-RMSD 44 Å) among the 20 trial poses
per complex, as well as the average i-RMSD of the trial poses,
are depicted. The same numbers can be seen in Tables 2 and 3
but in a case-by-case basis. Table 5 shows that, on average, and
excluding the X-ray structure, there was only another high
accuracy structure in the unbound–unbound/unbound–bound

Table 3 cASM results for each complex and considering the B:B situations. The root mean square deviation for the interfacial residues (i-RMSD) was
measured relative to the X-ray solution. Incorrect poses were defined as poses with i-RMSD 44 Å

Complex
i-RMSD of the
1st ranked structure/Å

i-RMSD of 1st ranked structure
(without X-Ray)/Å

Position of the
1st incorrect pose

No. structures with
i-RMSD 44

No. structures with
i-RMSD o1

Average
i-RMSD

B:B structures, SFASM scoring function
1BRS 1.0 1.0 10 4 5 3.2
1EMV 0.7 0.7 19 1 10 1.6
1DFJ 0.9 0.9 — 0 2 2.7
1FCC 1.4 1.4 10 4 6 2.6
1FQ9 0.0 3.5 3 9 1 6.0
1VFB 0.9 0.9 7 6 8 4.0
1F47 2.1 2.1 10 5 1 3.8

Average 1.0 1.5 10 4.1 4.7 3.4

B:B structures, SFASM:iA scoring function
1BRS 0.7 0.7 10 4 5 3.2
1EMV 0.7 0.7 20 1 10 1.6
1DFJ 0.9 0.9 — 0 2 2.7
1FCC 0.9 0.9 6 4 6 2.6
1FQ9 0.0 3.5 3 9 1 6.0
1VFB 0.9 0.9 7 6 8 4.0
1F47 2.1 2.1 9 5 1 3.8

Average 0.9 1.4 9 4.1 4.7 3.4

Table 4 Interfacial RMSD (i-RMSD) between the X-ray structures and the
docking results, considering (i) the best ranked pose, (ii) the best pose but
excluding the X-ray solution and (iii) the position of the first incorrect
solution (with i-RMSD 4 4 Å) in the ranking results for the two SF developed
here. The results correspond to the average of all the unbound–unbound
(U:U) and unbound–bound (U:B) complexes (top) and bound–bound (B:B)
complexes (bottom). Note that the values of i-RMSD for the 18 complexes
do not follow a parametric distribution, which means that it is not statistically
adequate to express the spread of the i-RMSD values through a single
parameter (i.e. a standard error). Instead, the reader shall look into the list of
values in Table SI3 (ESI)

SFASM SFASM:iA

U:U and U:B test set (11 complexes)
i-RMSD of 1st ranked structure/Å 0.7 0.1
i-RMSD of 1st ranked structure (no X-ray)/Å 2.9 4.2
Position of the 1st structure with i-RMSD 44 Å 6 6

B:B test set (7 complexes)
i-RMSD of 1st ranked structure/Å 1.0 0.9
i-RMSD of 1st ranked structure (no X-ray)/Å 1.5 1.4
Position of the 1st structure with i-RMSD 44 Å 10 9

Table 5 Average number of high accuracy poses and of incorrect poses
among the 20 trial poses generated by the search algorithm of the docking
software, for each complex. The average i-RMSD is shown as well. The results
for each of the individual complexes can be consulted from Table SI4 (ESI)

U:U/U:B set B:B set

No. of high accuracy trial poses 1.2 4.1
No. of incorrect trial poses 9.4 3.7
Average i-RMSD for the trial 5.6 3.4
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set, highlighting how sensitive a scoring function has to be, to
identify it. Among the same set of 20 structures there were on
average 9.4 incorrect structures, and the average i-RMSD corre-
sponded to 5.4 Å.

The situation is much better in the bound–bound set, where
an average of 3.7 high resolution structures are present (as well
as 4.1 incorrect ones) and the average i-RMSD was 3.4 Å. This
clearly highlights the difficulties that search algorithms have in
dealing with the rearrangement that the monomers undergo
upon binding.

The low quality of the trial pose set causes problems for the
overall result. If we exclude the X-ray solution from the trial set
and use SFASM:iA, we move from an average i-RMSD for the 1st
ranking solution of 0.1 Å–4.1 Å in the unbound–unbound/
unbound–bound set (from 0.7 Å to 2.9 Å by SFASM), which is
not as satisfactory as before (but still much better than the
results of current scoring algorithms). The situation is much
less problematic in the bound–bound set, where we move from
an average i-RMSD of 0.9 Å–1.4 Å (from 1.0 Å to 1.5 Å by SFASM).
This confirms again that the scoring problem is mostly solved
by SFASM:iA or SFASM, and the remaining inaccuracies come
from the existing search algorithms.

One of the most important aspects of prediction is to
identify the failure. We registered the position of the first
incorrect structure in Tables 2–4 for that purpose. Obviously,
an incorrect structure is only problematic if it is ranked 1st (and
‘‘uncomfortable’’ if it is ranked 2nd). On average, the first
incorrect structure is ranked 5th–6th, so there is no problem
with this. . . on average. But on a case-by-case basis (Tables 2 and 3),
a few problems may eventually come up.

The most important thing is to realize that an incorrect
structure was never ranked 1st, in any single case of both
unbound–unbound/unbound–bound and bound–bound sets,
with any of the two scoring functions we have developed.

Cases in which incorrect structures have been ranked 2nd in
the unbound–unbound/unbound–bound set were rare (only 2
cases among 18 complexes, structures 2EKS and 1A22 by
SFASM:iA, and structures 2EKS and 1DFJ by SFASM). With 2EKS,
the problem was unavoidable because there was only a non-
incorrect structure among the trial poses, and it was ranked 1st.
In 1DFJ there were 11 incorrect structures, and just one high
accuracy structure, in the whole trial pose set. In the case of
1A22, there were 16 incorrect structures and just one high
accuracy structure within the whole trial pose set. Again,
limitations came obviously from search, not from scoring.
A final emphasis on this comes from the results of the
bound–bound set, where search is simpler. Within this set,
an incorrect structure was never chosen for the 1st or 2nd
ranking places, with any of the two scoring functions.

Conclusions

In this work we have used 18 protein–protein complexes
with different sizes, hydrophobicity, and hot spot number,
to derive and validate two high-reliability, physically based,

scoring functions for protein–protein docking (here named
SFASM and SFASM:iA). They calculate the binding free energy
differences upon alanine mutation of interfacial residues
(using a calibrated MM-PBSA approach), and compare the
computed values with the corresponding experimental ones.
Therefore, they do need experimental binding free energies
upon ASM as input. The best match between computed and
experimental values identifies the true pose. The interface area
serves as an additional criterion to distinguish between equiva-
lent experimental/theoretical matches.

The trial structures were generated using widely used
protein–protein docking software. Care was taken to include
decoy poses among the set to be tested by SFASM and SFASM:iA.

SFASM and SFASM:iA identified the native-like structures with
high accuracy and reliability (B94% success). Experimental
ASM results may eventually need to be measured a priori if they
are not known from the beginning. This can be seen as a
limitation of the method. However, despite time and labor that
this task involves, it is obvious that the outcome of a reliable
P–P structure pays off the effort.

Several machine learning and knowledge-based statistical
methods have been used to identify native structures103–105 and
hot-spots.106–126 For example, Zhao et al. used a feature-based
learning method based on tridimensional protein–protein
interface features to distinguish between native and non-
native structures with very remarkable success.

It is possible that the integration of energy-based and
knowledge-based scoring functions could yield better results than
any of the strategies alone (a definite answer for this need further
studies). We shall note that the outcome of this ‘‘consensus scoring
scheme’’ had to be characterized as an empirical, knowledge/
training based scoring scheme because the consensus scheme
has to be based on training.

The limitation of machine-learning and statistical approaches
is that they are not grounded on rigorous first-principles physics.
As such, their predictability capacity will always depend on the
examples used to train/fit/parameterize them, and they will easily
fail when dealing with unusual structural features, which many
times are the most interesting ones. The only way to have a truly
predictable method is to root it in basic physics. Physics-based
methods will naturally predict unusual (or even unique) struc-
tural features with the same accuracy as the most common
approaches. We are still far from a purely physics-based efficient
method for protein–protein docking, and this is the most impor-
tant limitation of physically-based methods. Our scoring functions
try to move in that direction. It is our opinion that ‘‘parameterized’’
methods are very useful for today, as they provide answers for
many current problems. In contrast, the future probably belongs to
the fully predictive, first principles, physics methods, and that is
why we are investing on them. However, how distant is this
‘‘future’’ is something that we are not really sure of.

When using SFASM and SFASM:iA the bottleneck that remains
in the process is the search algorithm. The accuracy of the pose
identified by SFASM and SFASM:iA improves markedly with the
accuracy of the trial structure set generated by current search
algorithms. Ultimately, one can only find a native-like structure
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if it is present at all in the trial poses. Therefore, the results
presented here move the bottleneck of P–P docking from the
scoring of poses to the search for good trial poses. We may say
that a new step was given in the difficult world of predictive
docking.
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G. Seabra, I. Kolossváry, K. F. Wong, F. Paesani, J. Vanicek,
X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang,
C. Tan, J. Mongan, V. Hornak, G. Cui, D. H. Mathews,
M. G. Seetin, C. Sagui, V. Babin and P. A. Kollman, 2008.

57 I. S. Moreira, P. A. Fernandes and M. J. Ramos, Proteins:
Struct., Funct., Bioinf., 2006, 63, 811–821.

58 I. S. Moreira, P. A. Fernandes and M. J. Ramos, J. Phys.
Chem. B, 2006, 110, 10962–10969.

59 I. S. Moreira, P. A. Fernandes and M. J. Ramos, Int.
J. Quantum Chem., 2007, 107, 299–310.

60 I. S. Moreira, P. A. Fernandes and M. J. Ramos, J. Chem.
Theory Comput., 2007, 3, 885–893.

61 I. S. Moreira, P. A. Fernandes and M. J. Ramos, J. Phys.
Chem. B, 2007, 111, 2697–2706.

62 I. S. Moreira, P. A. Fernandes and M. J. Ramos, Theor.
Chem. Acc., 2008, 120, 533–542.

63 L. T. Chong, Y. Duan, L. Wang, I. Massova and
P. A. Kollman, Proc. Natl. Acad. Sci. U. S. A., 1999, 96,
14330–14335.

64 P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. H. Huo,
L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini,
P. Cieplak, J. Srinivasan, D. A. Case and T. E. Cheatham,
Acc. Chem. Res., 2000, 33, 889–897.

65 R. T. Bradshaw, B. H. Patel, E. W. Tate, R. J. Leatherbarrow
and I. R. Gould, Protein Eng., Des. Sel., 2011, 24, 197–207.

66 I. S. Moreira, J. M. Martins, R. M. Ramos, P. A. Fernandes
and M. J. Ramos, Biochim. Biophys. Acta, Proteins Proteomics,
2013, 1834, 404–414.

67 S. A. Martins, M. A. S. Perez, I. S. Moreira, S. F. Sousa,
M. J. Ramos and P. A. Fernandes, J. Chem. Theory Comput.,
2013, 9, 1311–1319.

68 W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera
and B. Honig, J. Comput. Chem., 2002, 23, 128–137.

69 W. Rocchia, E. Alexov and B. Honig, J. Phys. Chem. B, 2001,
105, 6507–6514.

70 I. S. Moreira, P. A. Fernandes and M. J. Ramos, THEOCHEM,
2005, 729, 11–18.

71 D. Sitkoff, K. A. Sharp and B. Honig, J. Phys. Chem., 1994,
98, 1978–1988.

72 M. L. Connolly, J. Appl. Crystallogr., 1983, 16, 548–558.
73 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics,

1996, 14, 33–38.
74 J. V. Ribeiro, N. M. F. S. A. Cerqueira, I. S. Moreira,

P. A. Fernandes and M. J. Ramos, Theor. Chem. Acc.,
2012, 131, 1–7.

75 S. J. De Vries, A. D. J. van Dijk, M. Krzeminski, M. van Dijk,
A. Thureau, V. Hsu, T. Wassenaar and A. M. J. J. Bonvin,
Proteins: Struct., Funct., Bioinf., 2007, 69, 726–733.

76 S. J. De Vries, M. van Dijk and A. M. J. J. Bonvin,
Nat. Protoc., 2010, 5, 883–897.

77 J. Janin, Protein Sci., 2005, 14, 278–283.
78 T. M.-K. Cheng, T. L. Blundell and J. Fernandez-Recio,

Proteins: Struct., Funct., Bioinf., 2007, 68, 503–515.
79 D. Duhovny, R. Nussinov and H. Wolfson, in Algorithms in

Bioinformatics, ed. R. Guigó and D. Gusfield, Springer,
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